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One of the most powerful tools in the txajcctory clcsi~ncw’s  bag of tricks is the AV-
ltarth-Gravity-Assist (AV-EGA).  On this Ixajcctory  a spacecraft 1 caves Narth on, for
mamp] o, a two-year hcli occntri c orbit. At the aphc]i on of that orbit a AV maneuver
is performed which reshapes the orbit to lower its perihelion. The orbit timing is
arranged so that when the spacecraft then crosses Narth’s  orbit (either before or
after perihelion) it encounters Earth in a gravity assist maneuver. The advantage
of the AV-RGA is that the incrcasc  in pcrigcc velocity from the launch to the
en countm  is much greater than the VCI ocity change at t}Ic d ccp-space  man cmvcr.
The resulting hclioccmtric mcrgy is {~rcater than in the initial two-year orbit and
again the incrcasc  is more than could bc obtained from the deep-space maneuver
alone.

‘J’wo aspects of the AV-XGA arc countcrintuitivc  (as is often the case in orbital
mechanics). ~Onc is that the deep-space maneuver which sets up the heliocentric
energy gain actual] y reduces the heliocentric cncwgy--tlw spacecrafts] ows down at
aphcli on to move the pcrihc!li on c1 oscr to the sun. ‘J’hc second mpcct is perhaps
more puzzling to the cxpcrienccd  trajectory designer (who is used b the sometimes
paradoxical behavior of orbits). In gcrwral, the most cfhcicnt time to change orbital
energy is when the velocity is highcsi,  i,c., at pcriapsc. in the AV-EGA, however,
the deep-space maneuver is most efl’cctivc when done where the velocity is lowest,
i.e., at aphc]ion.

‘J’hc conventional explanation of the AV-I’;GA ignores these aspects as follows: it is
easiest to reshape an orbit where t,}~c vdocit,y is lowest; the more the orbit shape is
changed, the greater the angl c bctwccn the spacecraft orbit and Earth’s orbit where
they cross; the greater the ang]c, the greater the di ffcrcncc bctwccn  the spacccrafi’s
velocity and Narth’s velocity at cncountcr;  this velocity diffcrcncc  when aligned with
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I;arth’s  velocity by the, gravity assist gives us our final hcliocmtric cncr~y.  All this.
is true and is fine as far as it goes. Ncvcrthe,less, there remains an clement of
mystery in the AV-I;GA, not, least lmcausc there is no direct way in the conventional
explanation to relate the magnitude of the deep-space maneuver to the final gain in
heliocentric cncwgy.

Jacobi’s intcgra]  saves the day

‘1’hc reason for the apparent mysteriousness of the AV-I’;GA trajectory is that the
discussion above considms  the trajectory as a swim of two-body problems:
ltarth/spacecraft  for launch, Sun/spacecraft for initi al orbit ancl d cwp-space
maneuver, Eart}dspacccraft  for gravity assist man cuvcr,  and Sun/spacccrafi for
final orbits. IHut the AV-IWA is very much a creature of the three-body problem, in
which it is not appropriate to baso an analysis on encr~y. ]nstcad, we must turn to
the three-body analog of energy, Jacobi’s intc~ral.

If the Earth traveled in a circular orbit arounc] the Sun and the only accelerations
cxpcricnccd  by a (massless)  spacecraft were caused by the cmtra] gravity of the
Hart}] and Sun, t}]m Jacobi’s integral ~ ~~
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is a constant along the spacecraft’s traj cctory, wh crc v is the magni  tud c of the
rotational velocity, which is the velocity of the spacecraft in a rotating three
dimensional coordinate systmn that is centcrcd  at the l!arth-Sun barycentm and
rotates with the ltarth-Sun system, p is the distance from the baryccntm to the
projection of the spacecraft’s position on the l{;arth-Sun orbit p]anc,  re is t}le
distance of the spacecraft from the Earlh} ancl rs is the distance of the spacecraft
from the Sun. (Ilcfinitions  for o.), pc, and ps arc given in ‘l’able 1.)

IT) a two-body problem, energy  is a constant function of position and the magnitude
of the inertial velocity. in the circular restricted three-body problem, Jacobi’s
integral is a constant function of positi on and the magnitud c of the rotational
velocity. For our purposes here wc may consider a maneuver to be an
instantaneous velocity change which does not affect position. Thus, while an energy
change is maximized for a mancuvcw if the maneuver is done when the inertia]
velocity is greatest (at the pcriapsc of a conic), a change in Jacobi’s constant is
maxi mimcl if ia maneuver is done W} ICI-I the rotational velocity is greatmt.

‘1’his is the k~y to undcrstandinc the AV-ltGA.  ‘1’hc deep-space mancuvcw is in fact
done when the magnituc]c of the rotational velocity is greatest and is done in the
direction of the rotational velocity. Furthermore, the conscqucmt change  in Jacobi’s
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constant can km used to estimate the velocity increase from launch perigee to
mcountcr perigee which results from the dcwp-space maneuver, so the magnifyin~
effect of the AV-NGA can be calcul atcd.

A numcrica’1 example

of course the real world is not a circular restricted three-body problcm. Nor has a
straig}~tforward AV-l~GA trajectory hcm flown in a space mission. Ilut, AV-ltGA
trajectories have been carried as baseline trajectories durinc the design process of
several missions. In particular, at OI)C time the baseline trajectory for CltAl{’a used
a two-year AV-HGA w}~ic}l had a deep-space maneuver of 0.6 knds  and an incrcasc
in pcrigcc  velocity of 2.2 km/s (SCC Figure I), 1 ret’s compare this to an estimate
obtai ncd by using J acobi’s con stant.

Wc start by assuming the ICarth travels in a circular orbit  around the Sun according
to the constants in ‘l’able 1. A two-yc.ar orbit which is tangcni at perihelion to
Earth’s orbit has an aphelion distance of 2.175 AIJ. At that distance, a point fixccl
in the rotating l{~arth-Sun systcm has an inertial velocity of 64.78 knl/s (= 2.175 a.(o)
in the dircct,iom of the rotation; equivalently a point fixed in inertia] space at that
distance has a rotational velocity of equal magnitude but in the opposite direction.
Since the spacecraft speed at aphelion is 16.03 kn~/s, the spacecraft’s rotational
velocity there is 48.75 knl/s.

A point fixed C1OSC to Narth, say at 170 km altitude, has a nc~ligiblc rotational
VC1 ocity in the ltarth-Sun rotating systcm. ‘1’hus for the launch ant] cncountcr,  the
spacecraft’s rcLati onal vcl ocity is cssmtiall y th c same as its Narth-relative VC1 oci ty
regardless of the orientation of the hypmbola.  This is 12,15 kn~/s at 170 km altitmdc
on a h ypcrbo] a launchi  n-g tangcntial]y into a two-year hc]i occntri c orbit.

]~’rom ccluation (1) wc have

--AC = 2VAV -+ (Av~ (2)

so that for small Av wc scc that AC is roughly proportional to the rotational velocity.
For the case analyzed here this gives about a magnification factor of 4, in good
agrccmcnt with the data. More prcci SC1 y, if Vff, is the rotational velocity at aphelion
and v]; is the rotationa]  velocity at pcriccc,  wc have

2 VE A VI; -I (Av# =- 2 \’C,, A V{l, -i (Av{l)g (3)

or
(Avl{p + 2912. l~AVI< -2-48. 75s0.6 - 0.13~ z O (4)

so that AV1: = 2.,19 km/s, in even better agrccmcnt with the data.
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A 11(2W typt? of AV=EGA trajcctwy

‘J’hc example above was a two-year AV-I;GA, but of course them is nothing to
constrain the! initial orbit to have a two-year period, A three-year orbit would CIO as
well and in fact, as this analysis implies, gives a greater ma~nification  of the dcwp-
spacc maneuver. A ICSS commonly consiclmed altmmativc  is a 1.5-year  orbit  which
encounters l;arth aftnr three years.

All that is really necessary for a AV-IXA trajectory is that a spacecraft leave Earth
on an orbit  tcl a point where its rotational velocity is ~rcatcr than at launch pcri~m
and from whore it can encounter ]{;arLh after performing a maneuver.

‘J’his leads us to realize the existence of a new type of AV-EGA trajectory. ‘J’hc AV-
ICGAS above al] start with orbits larger than lCarLh’s orbit; let’s call them external
AV-NGA trajcctorim. What about internal AV-EGA trajectories, that start off with
orbits small m than Earth’s?

For example, if a spacecraft starts oflin a 2/3- year orbit  it leaves with very nearly
the same vclclcity relative to Karth  as in a two-year orbit but in the opposite
direction. At perihelion the spacecraft has a rotational velocity of 31.32 kn~/s so a
magnification factor of about 2 1/2 is possib]c for this AV-NGA. lntcrnal AV-EGA
trajectories have  pckcntial  application to inner planet mi ssions and for reducing
rendezvous AV in Mars or outer planet missions.
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= 149597870. kn]
:S =1.327124  x101~k,,]3/s2
l(C = 398600.5 kn)3/s2
@ =. 1.990987 x10-7 rad/s

Table 1.

C! ONSTAN’J’S

II)MI1 sc]ni-lnajor  axis of the }Gartll’s  orbit
Gravitational constant times the mass of t,hc Sun
Gravitational constant times the mass of the l%ri,h
mCaII angu]ar  rotation rate of the lkrt}]-Sun system
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l“igm 1, ‘J’lIc two-year  AV-l~;GA trajectory which was l,hc basc]inc  for
CRAF in 1989,
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